
Privacy-preserving Equality Test towards Big
Data

Tushar Kanti Saha and Takeshi Koshiba

1 Division of Mathematics, Electronics, and Informatics,
Graduate School of Science and Engineering, Saitama University,

Saitama, Japan.
saha.t.k.512@ms.saitama-u.ac.jp

2 Faculty of Education and Integrated Arts and Sciences,
Waseda University, Tokyo, Japan.

tkoshiba@waseda.jp

Abstract. In this paper, we review the problem of private batch equal-
ity test (PriBET) that was proposed by Saha and Koshiba (3rd APW-
ConCSE 2016). They described this problem to find the equality of an
integer within a set of integers between two parties who do not want to
reveal their information if they do not equal. For this purpose, they pro-
posed the PriBET protocol along with a packing method using the binary
encoding of data. Their protocol was secured by using ring-LWE based
somewhat homomorphic encryption (SwHE) in the semi-honest model.
But this protocol is not fast enough to address the big data problem in
some practical applications. To solve this problem, we propose a fixed
length base-N encoding based PriBET protocol using SwHE in the same
semi-honest model. Here we did our experiments for finding the equali-
ties of 8 ∼ 64-bit integers. Furthermore, our experiments show that our
protocol is able to evaluate more than one million (resp. 862 thousand)
of equality comparisons per minute for 8-bit (resp. 16-bit) integers with
an encoding size of base 256 (resp. 65536). Besides, our protocol works
more than 8 ∼ 20 in magnitude than that of Saha and Koshiba.

Keywords: Private batch equality test, Base-N encoding, Homomor-
phic encryption, Packing method

1 Introduction

Since the establishment of Internet technology, data are increasing day by day
in an expeditious speed. Also, users are extensively using the computers, lap-
tops, tabs along with the Internet. Besides, smart-phones and Wi-Fi devices are
helping us to use the Internet even when we are mobile. So data are becom-
ing very big which are called big data. Managing and analyzing big data is a
big challenge for its user where new tools and techniques are indispensable. In
addition, local storage is not enough for the users to store their data. Recently,
banks, insurance companies, hospitals, research institutes, public service centers,
and so on have come forward to store their customers’ data electronically and

2 Tushar Kanti Saha, Takeshi Koshiba

maintain their databases. Besides, cloud computing has established itself as a
reliable service provider by giving remote on-line storage to its users at an af-
fordable price. Moreover, organizations are interested in outsourcing their data
to the cloud servers to access them anytime from versatile locations. Also, these
organizations want to provide security to their data. Here encryption is one of
the procedures to provide data security. In addition to this, the organizations
want to do their required operations on the encrypted data which is hard to per-
form before decryption. So homomorphic encryption [11] is a solution for them
which allows meaningful computations like additions and multiplications on the
encrypted data.

On the contrary, many research works in secure computation (for exam-
ple, [1,6,12,14,16]) have already been conducted using ring-LWE based homo-
morphic encryption after the breakthrough work of fully homomorphic encryp-
tion (FHE) by Gentry [5] in 2009. However, fully homomorphic encryption allows
any number of additions and multiplications on the encrypted data which makes
it slower for practical use [12]. In 2011, Brakerski and Vaikuntanathan [1] pro-
posed one more somewhat homomorphic encryption (SwHE) using the concept
of ring-LWE which works little faster due to supporting many additions and
few multiplications. Thereafter it had been used in the literature [6,12,16] which
showed the practicality of SwHE. Now some organizations are needed to share
their data with other organizations for different purpose like private data min-
ing, machine learning, searching, information retrieval, and so on where private
equality test is important. But data protection regulation does not allow these
organizations to share their data with one another or even with the cloud. Here
PET protocol using SwHE can be used by these organizations which was pro-
posed by Saha et al [13]. They also proposed private batch equality test (PriBET)
protocol for finding the equality of an integer with a set of integers using the
batch technique. But their achieved performance is not good enough to handle
a large dataset of millions of integers. Furthermore, most of the organizations
deal with a large dataset which varies from several gigabytes to terabyte where a
faster performance is the prerequisite to search something within their datasets.

1.1 Prior Works

The idea of secure computation was first introduced by Yao in 1980 [19]. In this
section, we review some papers on secure computation for the PriBET protocols.
To date, very few protocols have been proposed for the PriBET protocol. In
2016, Couteau [3] proposed the PriBET protocol in the semi-honest model that
required 7 rounds communication between two-party to compare data size of
16 ∼ 128-bit. But they did not show any implementation. To understand the
practicality of the protocol, some implementations are indispensable. Recently,
Saha et al. [13] proposed private batch equality test (PriBET) protocol which
shows some practicality of the protocol. Their protocol was able to do about 140
thousand comparisons per minute for 8-bit data only. The performance decreases
if the data size is increased more. To date, existing equality protocols are not

Privacy-preserving Equality Test towards Big Data 3

enough to handle a large database for many equality queries. So new method is
desirable which can be a big step towards big data processing.

1.2 Typical Applications

In 2016, Saha et al. [13] showed some application areas of the PriBET protocols
including on-line auction, genomic computation, machine learning, data mining,
and database query processing where batch equality protocol is required. Besides,
PriBET protocol is useful for private information retrieval [20]. Over and above
that, our protocol may be useful in some practical applications like credit card
number verification, criminal database searching using social security number,
insurance number verification, and so on.

1.3 Motivation

In 2016, Saha et al. [13] proposed private batch equality test (PriBET) protocol
for comparing integers of 8 ∼ 32 bits with a new packing method using ring-LWE
based SwHE. Here they achieved an acceptable performance for handling private
equality computation of a small dataset like several megabytes to a gigabyte in
size. But this performance is not enough for addressing big data which refers
several gigabytes to a terabyte. Saha et al. performed equality computations on
binary vectors which required a large lattice dimension to process a kilobyte of
data. For example, processing 1 MB data (223 bits) requires a lattice dimension
of 223 where they consider a lattice dimension of 212 to get more efficiency. If we
engage the protocol with a lattice dimension of 4096, then it would require about
351 seconds to process 1 MB of data for equality which in turns requires about
100 hours to process 1 GB of data with a single machine. This performance could
be further improved by using some parallel processing techniques or engaging
many computers in a distributed computing environment. But this performance
is not enough for handling a large database. Furthermore, the processing speed
of this protocol is mostly dependent on lattice dimension where they used binary
encoding to find the equality. At this point, this protocol can be improved further
if we would have a method to reduce the lattice dimension.

1.4 Our Contribution

In this paper, we propose a modified PriBET protocol for finding the equalities of
some integers with 8 ∼ 32 bits along with an efficient data encoding technique
to reduce the lattice dimension as well as processing time. Theoretically, we
achieve a reduction of the lattice dimension by a factor log2 (N) than Saha et
al.’s protocol [13] due to using an efficient encoding technique whereN represents
the encoding size. Also, our practical experiments show that our protocol works
more than 8 times faster than Saha et al.’s protocol [13]. In addition, we have
been able to process more than 1 million comparisons per minute for the 8-bit
integers and 862 thousand comparisons per minute for the 16-bit integers with

4 Tushar Kanti Saha, Takeshi Koshiba

the encoding size of 28 and 216 respectively which could be helpful to process
a big database. Besides, in the PriBET protocol of Saha et al., Bob needed a
decryption help from Alice to check a part of his result for some decision making
after his computation. In this case, he leaked some additional information to
Alice due to sending whole encrypted polynomial to Alice. Here we minimize
the information leakage problem through random masks that occurred in [13].
Besides, we show the practical upper bound of the encoding size of our protocol
using ring-LWE SwHE.

Remark 1. Here we compare the performances of the both methods which are
implemented in a single PC environment configured with one 3.6 GHz Intel core-
i7 CPU and an 8 GB RAM in Linux environment.

2 Data Encoding Technique

In this section, we review the Saha et al.’s data encoding technique [13] and
discuss our base-N data encoding technique. The base-N encoding was also
used by Yasuda et al. [18] to pack a large integer vector of 16 ∼ 32-bit for
an efficient statistical analysis. But we use fixed length base-N encoding where
most significant digits (MSDs) are filled up by ‘0’ if it is empty in the encoded
number. The reasons for choosing the base-N encoding are described below.

Notations. In this paper, Z denotes the ring of integers. In addition, R denotes a
ring of integer of the form Z[x]/f(x) where f(x) denotes a cyclotomic polynomial
of degree n as f(x) = xn+1 with a lattice dimension n. For a prime number q, the
ring of integer modulo q is denoted by Zq. The ciphertext space is denoted by the
ring Rq = R/qR = Zq[x]/f(x). For an integer t < q, the message space is defined
as Rt = Zt[x]/f(x). Besides, Z[x] denotes the ring of polynomials over integers.
For a vector A = (a0, a1, . . . , an−1), the maximum norm of ∥A∥∞ is defined as
max |ai|. Let ⟨A,B⟩ denote the inner product between two vectors A and B.
Moreover, the function Enc(m, pk) = ct(m) defines the encryption of message m
using the public key pk to produce the ciphertext ct. Also, l and lN denote the
length of an integer in binary and base-N encoding respectively. Besides, γ and
k represent the block size and the total number of records respectively where a
block is a collection of records.

In 2016, Saha et al. [13] used binary encoding technique over the alphabets
{0, 1}l for their private batch equality protocol (PriBET) where they got an ac-
ceptable performance for practical use for a batch data size k. But the protocol
is not fast enough for big data processing. From the Table 1 in [13], we observed
that the speed of the PET protocol mostly depends on the lattice dimension. In
the secure computation, they required three homomorphic multiplications over
a polynomial ring Rq. In the ring-LWE lattice-based homomorphic encryption
scheme, a homomorphic multiplication requires doing a large polynomial multi-
plication over a lattice dimension of at least n = 2048 to achieve a security level
over 128-bit [13]. Saha et al. showed the private batch equality tests for 8 ∼ 32-
bit integers within the lattice dimension of 2048 ∼ 4096. Here we observed that

Privacy-preserving Equality Test towards Big Data 5

the lattice dimension is increasing with the increase of data size l and batch size
k. For example, to process a 16-bit integers comparison, executing PriBET on
the block size of 128 required a lattice dimension of n = l · k = 16 · 128 = 2048.
On the other hand, it required a lattice dimension of n = l · k = 16 · 256 = 4096
for a batch size of 256. At this point, minimizing the lattice dimension is indis-
pensable to minimize the computation time of the PriBET protocol. If we able
to use an encoding technique other than binary, then we can reduce the lattice
dimension. Moreover, we call the used binary encoding in [13] as base-2 encod-
ing where alphabet set is {0, (2− 1)}l = {0, 1}l. In addition, a binary encoding
is using alphabets ‘0’ and ‘1’ to convert any decimal number z which requires
l = ⌊logN (z)⌋ + 1 digits where N = 2 in this case. Saha et al. used an l-bit
binary conversion algorithm for any integer of l = 8 ∼ 32-bit. That means, if
the required number of binary digit to represent any integer is less than l then
rest of the MSBs are filled up by zeros. If we can do the encoding over a large
alphabet set, then we can reduce the lattice dimension.

Data: z, N and l;
Result: base-N number;
Input z, N and l;
Set lN = l/ log2(N);
zbaseN = baseNConvert(z,N, lN);
Output zbaseN ;
Procedure: baseNConvert(z,N, lN)
forall the i ∈ lN do

set digit[i] = 0;
end
set ind = 0;
while (z ̸= 0) do

r = z mod N ;
z = z/N ;
digit[ind] = r;
ind++;

end
return digit;

Algorithm 1: Fixed length base-N encoding algorithm

Now we show the mathematical structure how the base-N encoding can work
faster than base-2 encoding where N > 2. Here we are dealing with lattice-based
cryptography where the working speed mostly depends on the lattice dimension
n. To process k data of size l-bit using binary encoding, Saha et al. required a
lattice dimension n′ of

n′ = k · l . (1)

On the contrary, to represent an l-bit integer in base-N encoding, we need a
vector of size of

lN = ⌈l/ log2(N)⌉ . (2)

6 Tushar Kanti Saha, Takeshi Koshiba

So using base-N encoding, the new lattice dimension n′′ can be determined from
batch size k and base-N vector size lN as

n′′ = k · lN . (3)

Now by dividing Eq. (1) by Eq. (3) and with the help of Eq. (2), the relation
between new lattice dimension n′′ and Saha et al.’s lattice dimension n′ can be
obtained as

n′/n′′ = l/lN = log2(N) . (4)

Here we get the lattice dimension reduction rate as a factor of log2(N). So we use
fixed length base-N encoding for any positive integer in Zt using the alphabet
set {0, 1, 2, . . . , N − 1}lN . Now we slightly modify the basic base-N conversion
algorithm to make it fixed length to get our algorithm for base-N encoding as
shown in Algorithm 1. From this algorithm, we get the fixed length base-N
encoding of an integer in Zt by putting ‘0’ in the MSDs if the length of the base-
N encoded vector is less than lN . From the above discussion, it is clear that
our encoding scheme also reduces the size of any integer vector from its binary
representation with the ratio of l : l/ log2(N). In addition, we believe that our
encoding technique can be used in other contexts where the length reduction of
binary encoded vectors and batch computation of the many Euclidean distances
are indispensable.

3 Our Protocol

Saha et al. [13] proposed the PriBET protocol using SwHE with binary encod-
ing in the semi-honest model. Here we propose another protocol called base-N
PriBET protocol using base-N encoding described in Section 2 to increase its
efficiency that is described as follows.

Consider a bank (Alice) wants to sanction some home loans to its customers
who have good credit score and are paying their taxes regularly. Suppose that
a customer of the bank now applies for a new home loan who has good credit
score with the required information along with his tax certificate. Furthermore,
the bank (Alice) needs to verify the customer’s tax identification number (TIN)
to check his status while sanctioning a new loan. On the contrary, the national
tax department (Charlie) is maintaining the database of all its taxpayers. Now
neither the bank can disclose its customer’s information to the national tax
department nor the national tax department can disclose it’s all customers’ in-
formation to the bank. Here a third party like Bob in the cloud can solve this
problem and does the verification on behalf of them without knowing the actual
tax number from both parties. This is a problem of verifying the equality of a
large integer with a large set of integers.

From the above scenario, let Alice has an l-bit integer which can be rep-
resented by a base-N vector as α = (α1, . . . , αlN) by using Algorithm 1. In
addition, the national tax department has k integers with the same size that
can be represented by the base-N integer vectors as βλ = (βλ,1, . . . , βλ,lN) by

Privacy-preserving Equality Test towards Big Data 7

applying same algorithm where 1 ≤ λ ≤ k. As we know from Saha et al. [13],
the Hamming distance between two l-bit integers can find out whether they are
equal or not. But the Hamming distance works for only binary vectors. There-
fore, we use the concept that two integers are equal when the square Euclidean
distance (SED) between their vectors using fixed length base-N encoding will be
0. Now the equality test for batch comparisons can be realized by the following
equation as

Eλ =

lN∑
i=1

(αi − βλ,i)
2 (5)

where 1 ≤ λ ≤ k. Moreover, Eλ represents the square Euclidean distances
(SEDs) between two base-N vectors α and βλ. Moreover, if Eλ in Eq. (5) is
0 for some positions of λ then we can say that α = βλ; otherwise α ̸= βλ. In this
way, Alice securely verifies her customer with the help of Bob. Now we describe
our protocol by the following steps.

Inputs: α = (α1, . . . , αlN) and {β1, β2, ..., βk}, where βλ = (βλ,1, . . . , βλ,lN) for
each λ in {1, 2, ..., k}.
Output: ∃λ[α = βλ] or ∀λ[α ̸= βλ]
Base-N PriBET protocol:

1. By using SwHE, Alice constructs the public key and private key by herself
and sends the public key to Charlie through a secure channel.

2. Then Alice encrypts the customer’s TIN α = (α1, . . . , αlN) using her public
key and sends it to Bob.

3. The national tax department (Charlie) also uses the public key given by
Alice to encrypt k TINs βλ = (βλ,1, . . . , βλ,lN) where 1 ≤ λ ≤ k and sends
the value to Bob.

4. Bob does the computation in Eq. (5) on the encrypted TINs and sends the
encrypted result ct(Eλ) to Alice to verify whether at least one of Eλ is equal
to 0.

5. For 1 ≤ λ ≤ k, Alice decrypts ct(Eλ) using her secret key and checks each
value Eλ.

6. If Alice finds at least one of the Eλ = 0 then she decides the match; otherwise,
she decides no match.

Remark 2. Here our protocol provides the passive security under the assumption
that Bob is semi-honest. In other words, Bob follows the protocol but tries to
learn information from the protocol. Furthermore, we use the same ring-LWE
based SwHE scheme used in Saha et al [13] for the security of our protocol. In
this section, we skip its review due to page limitation. Besides, the security as-
sumption of the scheme is based on the ring-LWE assumption which is reducible
to the worst-case hardness of problems on ideal lattices that is believed to be
secure against the quantum computer as mentioned by Lyubashevsky et al. [9].

8 Tushar Kanti Saha, Takeshi Koshiba

Remark 3. The goal of our protocol is to find α = βλ or α ̸= βλ for some
1 ≤ λ ≤ k. Now we also think about the security of index λ. In our base-N
PriBET protocol, Alice can know such index λ. Since such index is not actual
index that exists in the databases of the national tax department, so leakage of
such information to Alice does not harm the security of our protocol.

4 Packing Method

Packing method is the process of representing many data in a single polynomial.
We know from some existing literature [6,12,13,16] that packing method makes
many secure computations using ring-LWE SwHE more practical. Recently, Saha
et al. [13] used binary vectors to address their packing. Here we consider the same
packing with fixed length base-N vectors. Now we review the packing method
of PriBET protocol in [13] for our protocol using our base-N encoding by the
following way.

4.1 Packing Method for Our Protocol

As mentioned in our protocol of Section 3, we need to compute the SEDs
Eλ in Eq. (5) using few polynomial additions and multiplications to reduce
the cost where 1 ≤ λ ≤ k. Let us construct a base-N integer vector A =
(α0, . . . , αlN−1) ∈ Rt from a base-N vector α = (α1, . . . , αlN) of length lN . Fur-
thermore, let us consider another base-N integer vectors B which is constructed
by combining all base-N vectors in βλ = (βλ,1, . . . , βλ,lN) as B = (β1,0, . . . ,
β1,lN−1, . . . , βk,0, . . . , βk,lN−1) ∈ Rt of length k · lN . Here we want to compute
many SEDs Eλ in one computation which can be done by measuring the SEDs
between the vector A and each sub-vector in B. Moreover, existing literature
showed [12,16] that the secure inner product ⟨A,Bλ⟩ helps to compute the SED
between A and Bλ. Hence, we pack these integer vectors by some polynomials
with the highest degree (x) = n in such a way so that inner product ⟨A,Bλ⟩
does not wrap-around a coefficient of x with any degrees. For the integer vectors
A and B with n ≥ k · lN and 1 ≤ λ ≤ k, the packing method of Saha et al. [13]
in the same ring R = Z[x]/(xn + 1) is rewritten as

Poly1(A) =

lN−1∑
i=0

αix
i, Poly2(B) =

k∑
λ=1

lN−1∑
j=0

βλ,jx
lN ·λ−(j+1) . (6)

Here the coefficients αi and βλ,j are in the alphabets {0, 1, 2, . . . , N−1}lN instead
of alphabets {0, 1}l as in [13]. If we multiply the above two polynomials, we can
get the inner product computations which in turn helps the many square Eu-
clidean distances computation between A and Bλ. Moreover, this multiplication
will produce another big polynomial where each of the SEDs can be obtained
as a coefficient of x with different degrees. According to the SwHE described in

Privacy-preserving Equality Test towards Big Data 9

Section 5 of [13], the packed ciphertexts for Polyi(A) ∈ R are defined for some
i = {1, 2} using the public key pk as

cti(A) = Enc(Polyi(A), pk) ∈ (Rq)
2 . (7)

To get the inner product of the vectors A and Bλ, we multiply the polynomials
Poly1(A) and Poly2(B) in the same base ring R as follows.

(lN−1∑
i=0

αix
i
)
×

(k∑
λ=1

lN−1∑
j=0

βλ,jx
lN ·λ−(j+1)

)
=

k∑
λ=1

lN−1∑
i=0

lN−1∑
j=0

αiβλ,jx
i+lN ·λ−(j+1)

=
k∑

λ=1

lN−1∑
i=0

αiβλ,ix
lN ·λ−1 +ToHD+ ToLD =

k∑
λ=1

⟨A,Bλ⟩xlN ·λ−1 + · · · (8)

Here A is the vector of length lN and Bλ is the λ-th sub-vector of B of the same
length with 1 ≤ λ ≤ k. Moreover, the ToHD (terms of higher degree) means
deg(x) > lN ·λ − 1 and the ToLD (terms of lower degrees) means deg(x) <
lN ·λ−1. The result in Eq. (8) shows that one polynomial multiplication includes
the many inner products of ⟨A,Bλ⟩. In addition, the following proposition is
needed to hold for computing the many inner products over packed ciphertexts.

Proposition 1. Let A = (α0, α1, . . . , αlN−1) ∈ Rt be an integer vector where
|A| = lN and B = (β1,0, . . . , β1,lN−1, . . . , βk,0, . . . , βk,lN−1) ∈ Rt be another in-
teger vector of length k · lN . For 1 ≤ λ ≤ k, the vector B includes k sub-vectors
where the length of each sub-vector is lN . If the ciphertext of A and B can be
represented as ct1(A) and ct2(B) respectively by Eq. (7) then under the condition
of Lemma 1 (See Section 5 in [13] for details), decryption of homomorphic mul-
tiplication ct1(A)⊠ ct2(B) ∈ (Rq)

2 will produce a polynomial of Rt with xlN ·λ−1

including coefficient ⟨A,Bλ⟩ =
∑lN−1

i=0 αiβλ,i mod t. Alternatively, we can say
that homomorphic multiplication of ct1(A) and ct2(B) simultaneously computes
the many inner products for 1 ≤ λ ≤ k and 0 ≤ i ≤ (lN − 1).

5 Secure Computation using Euclidean Distance

We perform the computation of base-N PriBET protocol of Section 3 using the
SwHE scheme used in [13] and the packing method in Section 4.1. In addition,
according to Eq. (5), we need to find out the values of the many SEDs Eλ. Let us
consider two same base-N integers vectors A and B constructed by Algorithm
1 where Bλ = (βλ,0, . . . , βλ,lN−1) is the λ-th sub-vector of B with 1 ≤ λ ≤ k.
From these integer vectors, Eλ can be computed with the help of the arithmetic
computation between A and Bλ as

Eλ =

lN−1∑
i=0

(α2
i + β2

λ,i − 2αiβλ,i) . (9)

10 Tushar Kanti Saha, Takeshi Koshiba

Now we construct Poly1(A) and Poly1(A
2) (resp., Poly2(B) and Poly2(B

2))
from vector A (resp., B) using the packing method in Eq. (6). With the help of
inner product property in Eq. (8), now we compute ct(Eλ) of the Eq. (9) over
packed ciphertext ct1(A), ct1(A

2), ct2(B), and ct2(B
2) which are obtained from

Poly1(A), Poly1(A
2), Poly2(B), and Poly2(B

2)) respectively by the Eq. (7).
Moreover, we calculate ct(Eλ) from Proposition 1 and the packed ciphertext
vector ct1(A) ∈ Rq, ct1(A

2) ∈ Rq, ct1(B) ∈ Rq, and ct2(B
2) ∈ Rq in three ho-

momorphic multiplications and two homomorphic additions. Here ct(Eλ) equals

ct1(A
2)⊠ ct2(Vϵ)⊞ ct2(B

2)⊠ ct1(VlN)⊞ (−2ct1(A)⊠ ct2(B)) (10)

where Vϵ denotes an integer vector like (1, . . . , 1) of length k · lN and VlN

denotes another integer vector (1, . . . , 1) of length lN . In addition, ⊞ (resp. ⊠)
stands for homomorphic addition (resp., multiplication). The above-encrypted
polynomial ct(Eλ) includes many SEDs as the coefficients of different degrees of
x. Bob sends ct(Eλ) to Alice for decryption. According to Proposition 1 and our
protocol, Alice decrypts ct(Eλ) in the ring Rq using her secret key and extracts
Eλ as a coefficient of xlN ·λ−1 from the plaintext of ct(Eλ). Then Alice checks
whether at least of one of the Eλ contains 0 or not to help Bob to decide either
equality or non-equality.

Concealing Extra Information from Leakage. In the PriBET protocol of
Saha et al. [13], Bob in the cloud sent the whole encrypted polynomial to Alice
for decryption to decide something after the computation. Here Bob could see
every coefficient of the polynomial whereas she needs to check some coefficients
with a particular degree of x. For this reason, some extra information leakage
problem exists in the Saha et al.’s protocol. To compute Eλ for our protocol by
Bob in the cloud, he also needs a decryption help from Alice for some decision
making since he does not have the secret key. From the above discussion of secure
computation, Alice needs to check only the coefficient of xlN ·λ−1 for the large
polynomial ct(Eλ) produced by Bob. Also, all other coefficients of our n degree
polynomial can be published to Alice if Bob does not conceal those coefficients.
In our protocol, we conceal the extra information from leakage to Alice by adding
some random masks at the cloud (Bob) ends. We can conceal ct(Eλ) by adding

a random polynomial r in the base ring R as r =
∑n/lN

h=1

∑lN ·h−2
i=lN (h−1) rix

i . Now

Bob adds r to the ciphertext ct(Eλ) as ct(E
′
λ) = ct(Eλ)⊞r. Besides, the resulting

ciphertext ct(E′
λ) contains all required information as a coefficient of xlN ·λ−1 and

conceals all other coefficients using the random masks. In this way, we protect
ct(Eλ) from leaking any information to Alice except the coefficient of xlN ·λ−1.

6 Experimental Analysis

In this section, we show the parameter settings of our experiments along with
security level. We also show the selection process of our base-N encoding size
and the performance of our protocol towards big data.

Privacy-preserving Equality Test towards Big Data 11

Table 1. Performance of base-N PriBET protocol for a data size of 16384

Data
size
(bits)

Encod-
ing size
(N)

Block
size
(γ)

Plaintext
space (t)

Ciphertext
space (q)

Total com-
putation
time (ms)

Lattice
dimension(n)

Security
level

8

24
1024

211 61-bit

1469

2048

≥ 140

16 512 2953

32 256 5860

8

28
4096 216 71-bit 875

4096

16 2048 217 73-bit 1454

32 1024 218 75-bit 2844

16

216
4096 232 103-bit 982

32 2048 233 105-bit 1718

64 1024 234 107-bit 3157

32
232

8192 264 167-bit 1312
8192

64 4096 265 169-bit 1937

6.1 Parameters Settings

As discussed in Section 5 of [13], we selected proper values of the parameters
(n, t, q, σ) of our used security scheme for successful decryption and to achieve a
certain security level. In addition, we need to select the appropriate value for our
encoding size N . The security analysis of this protocol is skipped due to page
limitation which can be addressed in the full version of the paper.

Correctness Side. Here we show the correctness of our protocol for computing
ct(Eλ) for different lattice dimensions. According to the Lemma 1 in [13], the
correctness of ciphertext ct(Eλ) holds if

||⟨ct(Eλ), s⟩|| ≤ q/2 . (11)

As mentioned in [16], we consider the upper bound Φ of ∞-norm size ∥⟨ct, s⟩∥∞
for any fresh ciphertext ct ∈ (Rq)

2. In addition, the value of the upper bound Φ
is 2tσ2

√
n (see Theorem 3.3 in [6]). Here the ∞-norm size of ct(Eλ) in Eq. (10) is

defined by the inequality as ∥⟨ct(Eλ), s⟩∥∞ < 2nΦ2 +2nΦ2 (see [16] for details).
Furthermore, we take the value of Φ as 2tσ2

√
n (see [6] for details). Now the

inequality in Eq. (11) can be represented as ∥⟨ct(Eλ), s⟩∥∞ < 2nΦ2 + 2nΦ2 ≈
8n2t2σ4. The correctness for the inequality in Eq. (11) for the ciphertext ct(Eλ)
can be found if it satisfies

16n2t2σ4 ≤ q . (12)

Chosen Parameters. Here we need the lattice dimension n to be greater than
k · lN for our protocol. Since we required to compute the SED between two
base-N integer vectors of length lN . Now the plaintext space t should satisfy the
relation

t ≥ lN ·N2 . (13)

12 Tushar Kanti Saha, Takeshi Koshiba

As shown in Table 1, we consider encoding size N = 24 ∼ 232 for the lattice
dimension 2048, 4096, and 8192 with the data size k = 16384. We also consider
integer data size l to be 8-bit, 16-bit, 32-bit, and 64-bit for comparison in the
base-N PriBET protocol. Furthermore, we set t according to Eq. (13) for our
plaintext space Rt. According to the work in [6], we choose σ = 8 and the value
of q must be greater than 16n2p2σ4 for the ciphertext space Rq as in Eq. (12).
Therefore, we fix our parameters as (n, t, q, σ,N) as shown in Table 1 and Table
2. We did a block-wise computation to manage our dataset of 16384 integers
within lattice dimension of 2048, 4096, and 8192. We set the block size γ as
256, 512, 1024, 2048, 4096, and 8192 for the lattice dimension of 2048, 4096, and
8192.

Fig. 1. Comparative performances of our protocol for different encodings (base-16,
base-256, base-65536, and base-4294967296) using the lattice dimensions of 2048, 4096,
and 8192 with 8 ∼ 64-bit integers.

Security Level. In our experiment, we consider the security of the encryption
scheme against two attacks namely distinguishing attack [10] and decoding at-
tack [8]. According to the discussion of Lindner and Peikert [8], we consider every
parameter setting to provide more than 128-bit security level to secure our pro-
tocol against the distinguishing attack and more powerful decoding attack with
the advantage ϵ = 2−64. In addition, a root Hermite factor δ < 1.0050 is required
to achieve an 80-bit security level that was shown by Chen and Nguyen [2] in
lattice-based cryptographic schemes. As discussed in [6], the running time tadv is
defined as lg(tadv) = 1.8/ lg(δ)−110 where the root Hermite factor δ is expressed
as

c · q/σ = 22
√

n.·lg(q)·lg(δ) . (14)

As shown in Eq. (12) and Eq. (13), both t and q should be increased with the
increase of the encoding size N . If we use a low lattice dimension for a high

Privacy-preserving Equality Test towards Big Data 13

encoding size, we will get security level less than 128-bit according to Eq. (14)
which is not desirable. As shown in Table 1, if the encoding size N is 16 and
lattice dimension is 2048 then we get a security level of 140. But if N = 256 and
n = 2048 again then we get a security level 104 which is not acceptable for our
case. So we increase the lattice dimension with the increase of encoding size to
get a better security level. According to data of Table 2 in [17], our parameters
setting provides more than 140-bit security level to protect the security algorithm
from some distinguishing attacks as shown Table 1.

6.2 Implementation Details

We implemented both Saha et al. [13] and our protocols in C programming
language with Pari C library (version 2.7.5) [15] and ran the programs on a single
machine configured with 3.6 GHz Intel core-i7 processor and 8GB RAM using
Linux environment. Here we did two types of experiments. One is for selection
of encoding parameter and another for comparative analysis with the existing
method. To do these experiments we selected suitable values of our parameters
for our security scheme in [13] and encoding technique described in Section 2
respectively. We considered maximum data size of 16384 with 8 ∼ 64-bit integers
for our experiments.

Table 2. Parameter settings of Saha et al.’s protocol [13] and our protocol

Integer
size (l)

Data
size
(k)

Encoding size
(N)

Lattice
dimension (n)

Plaintext
space (t)

Ciphertext
space (q)

Saha
et al.

Our
method

Saha et
al.

Our
method

Saha et
al.

Our
method

Saha et
al.

Our
method

8 4096

2

28 32768 4096

2048

216 69 bits 73 bits

16 4096
216

65536 4096 232 71 bits 105 bits

32 2048 65536 4096 233 71 bits 107 bits

6.3 Selection of Encoding Size (N) and Performance towards Big
Data

Table 1 shows the performance of our base-N PriBET protocol for the lattice
dimension of 2048, 4096, and 8192 with a data size of 16384. Here we did the
experiments for different values of our encoding size N(24 ∼ 232). Furthermore,
we show a comparative performance of our different encoding size for the lattice
dimension of 2048, 4096, and 8192 as shown in Fig. 1. Also, we were able to
select the value of our encoding size N as low as 24 = 16 and as high as 232 =
4294967296. We tried to select the maximum value of encoding 264 where the

14 Tushar Kanti Saha, Takeshi Koshiba

computation is out of the capacity our machine due to a buffer overflow. It also
happens due to increasing the value of plaintext space t and ciphertext space
q. From this figure, it is clear that batch equality comparison is faster if data
size and encoding size are same for most of the cases. In addition, we achieved
a good performance for the encoding size of 28 = 256 and 216 = 65536 with the
data size of 8 and 16-bit respectively. So we chose two effective values of base-N
encoding size as 28 and 216.

Moreover, our experiments also showed that our protocol was able to do
over 1.1 million and 862 thousand of equality comparisons per minute with the
encoding size of 28 = 256 and 216 = 65536 for a data size of 8-bit and 16-
bit respectively. Moreover, our protocol was able to compute more than 700
thousand (resp. 200 thousand) equality comparisons per minute for 32-bit (resp.
64-bit) data with an encoding size of 232.

Fig. 2. Performance comparison between Saha et al. [13] and our method for the data
size 2048 and 4096 with length of 8 ∼ 32-bit using base-256 and base-65536 encodings

6.4 Comparative Analysis

In this section, we show comparative performances of our protocol with respect
to Saha et al.’s protocol [13] for batch comparison to find out the equalities
of an integer with a set of k integers. Saha et al. used the Hamming distance
computation for their PriBET protocol over binary encoding because Hamming
distance computation works only for binary data. Here we used the base-N
encoding to minimize the cost of computation by reducing lattice dimension. As
mentioned in Section 2, we achieved the lattice dimension reduction by a factor

Privacy-preserving Equality Test towards Big Data 15

of log2 N than Saha et al. which reflects in the parameter settings of lattice
dimension for both of the protocols as shown in Table 2. Due to using base-N
encoding, we use the SED computation to find the distance between a given
query and an existing dataset. According to Section 6.3, we used the two best
encoding size of 28 and 216 for getting the better performance. Table 2 shows
the used parameters settings for both of the protocols. Furthermore, we took the
integers set of 2048 and 4096 with a practical bit size of 8-bit, 16-bit, and 32-bit
for the comparison. For the data size of 2048 and 4096 using base-256 and base-
65536 encoding, the comparative performance of our protocol with respect to
Saha et al.’s protocol is shown in Fig.2 where timing was taken in milliseconds.
Our protocol showed the best performance than that of Saha et al. for 8-bit
integer comparison with a data size of 4096 and a less good performance for a
16-bit integer with the same data size. Overall, our protocol performed more than
8 ∼ 20 times as fast as Saha et el.’s protocol for the batch equality comparison.
Besides, we achieved more than 140-bit security using our parameter settings
described in Section 6.1.

7 Conclusions

In this paper, we discussed an efficient base-N PriBET protocol using ring-LWE
based somewhat homomorphic encryption in the semi-honest model. For this
purpose, we have shown a fixed length base-N encoding algorithm to reduce the
cost of equality comparison. In addition, we experimented our protocol using
different encoding size to find out the best value of our encoding size N . Our
protocol was able to do more than 1.1 million (resp. 862 thousand) comparisons
per minute for 8-bit (16-bit) integer batch comparison. Also, we have been able to
show that our protocol works more than 8 ∼ 20 times faster than the protocol of
Saha et al.’s protocol. We also believe that this achievement of around a million
of comparisons per minute is big a step towards big data processing. We hope
that our research will inspire future researches to use base-N encoding rather
than binary encoding for many computation purposes because of reducing the
lattice dimension by a factor of log2 (N).

Acknowledgments. This work is supported in part by JSPS Grant-in-Aids for
Scientific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

References

1. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/978-3-642-
22792-9 29

2. Chen, Y., Nguyen, P. Q.: BKZ 2.0: Better lattice security estimates. In Advances
in Cryptology — ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Berlin
Heidelberg (2011)

16 Tushar Kanti Saha, Takeshi Koshiba

3. Couteau, G.: Efficient secure comparison protocols, Cryptology ePrint Archive, Re-
port 2016/544, 2016, http://eprint.iacr.org/2016/544.

4. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it Com-
munications of the ACM, vol. 39, no. 5, pp. 77–85, 1996.

5. Gentry, C.: Fully homomorphic encryption using Ideal lattices. In: Symposium on
Theory of Computing - STOC 2009, pp. 169–178. ACM, New York (2009)

6. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be prac-
tical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW 2011,
pp. 113–124, ACM, New York (2011)

7. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality. 1(1), 59–98 (2009)

8. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias, A. (eds) Topics in Cryptology — CT-RSA 2011. CT-RSA 2011. LNCS,
vol 6558, pp. 319–339. Springer, Berlin Heidelberg (2011)

9. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (eds) Advances in Cryptology — EUROCRYPT
2010. EUROCRYPT 2010. LNCS, vol. 6110. pp 1–23. Springer, Heidelberg (2010)

10. Micciancio, D., Regev, O.: Lattice-based cryptography. In Post-Quantum Cryp-
tography, pp. 147–191, Springer, Heidelberg (2009)

11. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphism. In: DeMillo, R. A., Dobkin, D. P., Jones, A. K., Lipton, R. J. (eds.)
Foundations of Secure Computation, pp. 169–177. Academic Press, New York (1978)

12. Saha, T.K., Koshiba, T.: An enhancement of privacy-preserving wildcards pattern
matching. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-
Alfaro, J. (eds) Foundations and Practice of Security. FPS 2016. LNCS, vol. 10128.
pp. 145–160, Springer, Cham (2017). doi:10.1007/978-3-319-51966-1 10

13. Saha, T. K., Koshiba, T.: Private equality test using ring-LWE somewhat homo-
morphic encryption, In 3rd Asia-Pacific World Congress on Computer Science and
Engineering (APWConCSE), pp. 1–9, IEEE (2016)

14. Saha T.K., Mayank, Koshiba, T.: Efficient protocols for private database queries.
In: Livraga, G., Zhu, S. (eds) Data and Applications Security and Privacy XXXI.
DBSec 2017. LNCS, vol. 10359. pp. 337–348. Springer, Cham (2017)

15. The PARI∼Group, PARI/GP version 2.7.5, Bordeaux, 2014, http://pari.math.
u-bordeaux.fr/

16. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical
packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Li-
oudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W. (eds.): DPM 2013 and
SETOP 2013. LNCS, vol. 8247, pp. 34–50, Springer, Heidelberg (2014)

17. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pat-
tern matching using somewhat homomorphic encryption. In Proceedings of the 2013
ACM workshop on Cloud computing security workshop, pp. 65–76, ACM (2013)

18. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure sta-
tistical analysis using RLWE-based homomorphic encryption. In: Foo, E., Stebila,
D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 471–487. Springer, Cham (2015).
doi:10.1007/978-3-319-19962-7 27

19. Yao, A. C.: Protocols for secure computations. In 23rd Annual Symposium on
Foundations of Computer Science, 1982. pp. 160–164. IEEE (1982)

20. Yi, X., Kaosar, M. G., Paulet, R., Bertino, E.: Single-database private information
retrieval from fully homomorphic encryption. IEEE Transactions on Knowledge and
Data Engineering. 25(5), 1125–1134 (2013)

